

GMM-Based Speaker Age And Gender Classification In Czech And Slovak. Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What’s in-between. Aro, The Scientific Journal of Koya University, 3 (2), 24-29.

Objective Gender and Age Recognition from Speech Sentences. College of Computer Science and Mathematics, University of Mosul, Mosul Iraq, 2016.į. Speaker Gender Recognition Using Hidden Markov Model. A New Pitch-Range Based Feature Set for a Speaker’s Age and Gender Classification. THE SCHOOL OF ENGINEERING UNIVERSITY OF BRIDGEPORT CONNECTICUT, 2017.ī. SA Framework for Enhancing Speaker Age and Gender Classification by Using a New Feature Set and Deep Neural Network Architectures. Kata Kunci: Klasifikasi, Mel-Frequency Cepstrum Coefficient, Acoustic Models, Gaussian Mixture Model, Hidden Markov Modelĭ. Hasil eksperimen menunjukkan bahwa model GMM-HMM yang telah dibangun mampu melakukan klasifikasi usia-genderdengan akurasi hingga 96,4%. Model ini dapat diperbaiki dengan pengaturan parameter secara lebih presisi dan penggunaan dataset yang lebih besar.

Pada penelitian ini, basisdata suara diambil dari situs Common Voice, yang berisi banyak posting blog, buku-buku lama, film, dan pidato publik lainnya. Terakhir, HMM diterapkan untuk mendeteksi genderdan kelompok usia. Selanjutnya, dilakukan pelatihan untuk menghasilkan model akustik untuk semua penutur (pria dan wanita dari berbagai usia) di dalam basisdata pelatihan. Pertama, dilakukan pembangunan vektor ciri menggunakan Mel-Frequency Cepstrum Coefficient (MFCC).

Penelitian ini berfokus pada klasifikasi usia-gender berdasarkan suara pembicara menggunakan gabungan Gaussian Mixture Modeldan Hidden Markov Model(GMM-HMM). Pengelompokan usia yang berbeda dibagi menjadi tiga kelompok: anak, muda, menengah, dan senior berdasarkan rentang usia tertentu. Klasifikasi genderjuga telah diterapkan dalam pengenalan wajah, peringkasan video, penentuan tingkat izin yang berbeda untuk kelompok umur yang berbeda, dan lainnya. Klasifikasi usia-genderberdasarkan suara sangat berguna dalam perkenalan pidato dan dalam pengenalan emosi.
